Modeling edge effects in Graphene Nanoribbon Field-effect Transistors with real and mode space methods
نویسندگان
چکیده
A computationally efficient mode space simulation method for atomistic simulation of a graphene nanoribbon field-effect transistor in the ballistic limits is developed. The proposed simulation scheme, which solves the nonequilibrium Green’s function coupled with a three dimensional Poisson equation, is based on the atomistic Hamiltonian in a decoupled mode space. The mode space approach, which only treats a few modes (subbands), significantly reduces the simulation time. Additionally, the edge bond relaxation and the third nearest neighbor effects are also included in the quantum transport solver. Simulation examples show that, mode space approach can significantly decrease the simulation cost by about an order of magnitude, yet the results are still accurate. This article also demonstrates that the effects of edge bond relaxation and third nearest neighbor significantly influence the transistor’s performance and are necessary to be included in the modeling.
منابع مشابه
Edge Effects on the pH Response of Graphene Nanoribbon Field Effect Transistors
We report the pH response enhancement of the electrolyte-gated graphene field effect transistors by controllably introducing edge defects. An average improvement of pH response from 4.2 to 24.6 mV/pH has been observed after downscaling the pristine graphene into graphene nanoribbon arrays with electron beam lithography (EBL) and oxygen plasma. We attribute the improved pH response in graphene n...
متن کاملHigh-Speed Ternary Half adder based on GNRFET
Superior electronic properties of graphene make it a substitute candidate for beyond-CMOSnanoelectronics in electronic devices such as the field-effect transistors (FETs), tunnel barriers, andquantum dots. The armchair-edge graphene nanoribbons (AGNRs), which have semiconductor behavior,are used to design the digital circuits. This paper presents a new design of ternary half a...
متن کاملA Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor
Despite the simplicity of the hexagonal graphene structure formed by carbon atoms, the electronic behavior shows fascinating properties, giving high expectation for the possible applications of graphene in the field. The Graphene Nano-Ribbon Field Effect Transistor (GNRFET) is an emerging technology that received much attention in recent years. In this paper, we investigate the device performan...
متن کاملEffect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors
Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal-oxide-semiconductor field-effect transistors MOSFETs are reported. The addition of edge disorder significantly reduces ON-state currents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edge...
متن کاملAnalytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications
Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009